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SUMMARY: 

Flutter derivatives (FDs) of bridge deck are basic aerodynamic parameters for flutter stability analysis. A bridge 

wind resistance performance database has been built based on the existing wind tunnel testing results. In 

combination with some other collected numerical simulation data, the machine learning models for identifying FDs 

of closed box girders are developed via gradient boosting decision tree (GBDT) in two data-driven patterns. The 

machine learning models can explore the underlying input-output transfer relationship of dataset. Through the 

intelligent identification and sensitivity analysis of FDs, as well as the two-dimensional flutter performance analysis, 

the flutter performance of closed box girder can be further analysed. The prediction error of flutter critical velocity 

(FCV) under different models is analysed. In this way, the present research work can make the identification of FDs 

separated from tedious wind tunnel tests and complex numerical simulations to some extent. It can also provide a 

convenient and feasible option for expanding data sets of aerodynamic parameters and evaluating wind resistance 

performance preliminarily. 
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1. INTRODUCTION 

Machine learning provides a novel solution for the intelligent identification and analysis of wind 

engineering. It has been successfully applied to the aerodynamic parameters identification and 

wind resistant performance analysis of bridges in past several years. The predicted FDs of cross-

sections based on support vector machine (SVM) were used for estimation of flutter critical 

velocity (FCV) of cable stayed bridges (Lute et al., 2009). The ANN model was derived and 

trained using a dataset of FCVs, calculated using FDs from experiments and by varying 

geometrical and mechanical parameters (Rizzo and Caracoglia, 2020). Abbas et al. (2020) used 

the normalized lift force and torsional moment coefficients at current time step as the output of 

ANN to predict the aeroelastic response of bridge decks. Liao et al. (2021) proposed a machine 

learning strategy for flutter prediction based on four widely-used machine learning algorithms. 

Li et al. (2022) applied ANNs to establish the relationship between aerostatic coefficients and 

flutter performance for fast prediction of FCV. However, most of the existing research is a direct 

application of machine learning methods to a specific scenario in wind engineering, without 

illustrating the applicability of the algorithms and improving them accordingly. Besides, the 
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existing machine learning applications are mostly to build a black box, lacking the interpretation 

and extension of the model. 

 

In this study, the FDs are trained and predicted by gradient boosting decision tree (GBDT) based 

on wind tunnel test data and CFD numerical simulation results, and the distribution of FDs is 

analysed by the post-interpreter of model. According to different models and training results, 

combined with the predicted FDs and 2D 3DOF numerical simulation analysis, the error analysis 

of FCV is carried out, and the source of error is explained by the sensitivity analysis of FDs. In 

this way, the present research work can provide a convenient and feasible option for expanding 

data sets of FDs and evaluating flutter performance preliminarily. 

 

 

2. GRADIENT BOOSTING DECISION TREE (GBDT) 

In this paper, a hybrid model combining the gradient boosting decision tree (GBDT) and linear 

regression method is selected for the training of FDs after comparing various machine learning 

algorithms in previous study (Chen and Ge, 2019). The main idea of GBDT is to use weak 

classifiers (decision trees) to iteratively train input data before obtaining the optimal model. It 

accomplishes the task of classification by defining a logarithmic loss function for logistic 

regression.The minimum value of the loss function is: 
𝐶𝑚𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝐿(𝑦𝑖 , 𝑓𝑚−1(𝑥𝑖) + 𝑐)      (𝑥 ∈ 𝑅𝑚𝑗) (1) 

where the function L is a logarithmic loss function. xi is the eigenvalue of the input, yi is the 

output, and c is a constant. Rmj is the zone of the decision tree j domain and i, m, j are counting 

variables. Then the decision tree fitting function can be expressed as: 

ℎ𝑚(𝑥) = ∑ 𝐶𝑚𝑗𝐼(𝑥)      (𝑥 ∈ 𝑅𝑚𝑗)
𝐽
𝑗=1  (2) 

where the function I(x) is an indicator function that returns 0 when the equation in parentheses is 

false and 1 otherwise. J is the number of iterations. The updated boosting decision tree is the sum 

of the previously fitting decision trees and the latest fitting function: 
𝑓(𝑥) = 𝑓𝑚−1(𝑥) + ℎ𝑚(𝑥) (3) 

 

 

3. TRAINING, PREDICTION AND INTERPRETATION OF MODEL 

3.1. Data set for machine learning 

For machine learning modelling, it is necessary to establish a specialized data sample set of 

closed box girder, including the dimension of cross-section, wind attack angle, reduced wind 

velocity, FDs, etc. In this study, a specialized bridge wind resistance performance database has 

been built, which not only realizes the management, secondary utilization, and sharing of bridge 

wind tunnel test data, but also provides the necessary data foundation for subsequent machine 

learning. The wind tunnel test data of 20 long-span bridges with closed box girders are selected 

from this database. The specific involved parameters include the dimensions of cross-section (as 

shown in Fig. 1: width of deck-B, box height of beam-H, wind fairing extension length-b, wind 

fairing angle-α, inclined web slope-β) and the FDs under different reduced wind velocities. 

 

Due to the small amount of data, good training results may not be obtained through wind tunnel 

test data with large fluctuation. The FDs of the above 20 sets of cross-sections are re-calculated 

by CFD numerical simulation based on the forced vibration method. The numerical calculation 

domain is a two-dimensional flow field. Pointwise is used for geometric rendering and mesh 



generation, and ANSYS Fluent is used for numerical simulation. In order to further improve the 

machine learning training effect, 20 sets of numerical simulation data of closed box girder from 

open-source literature are added as mixed datasets to jointly drive the training process of 

machine learning. Moreover, another 15 sets of closed box girders are designed to make the 

distribution of the whole sample set more reasonable, and these 15 sets of cross-sections are also 

calculated by CFD simulation. All the numerical simulation results are compared with the wind 

tunnel test results or Theodorsen theoretical solutions to check the validity of the data. These 55 

sets of data are used as machine learning sample sets. 

 

3.2. Training and prediction of FDs 

3.2.1. Fitting accuracy of training set 

In this paper, machine learning models are trained on several data patterns. The training effect of 

FDs based on wind tunnel test data (pattern 1) and numerical simulation data (pattern 2) is shown 

in Fig. 2. The evaluation index of the model fitting degree is R2 statistic. R2 takes a value 

between [0,1]. The larger the R2, the better the model is. It can be seen from the Fig. 2 that the 

fitting degree of pattern 2 is significantly better than that of pattern 1. 

 

3.2.2. Generalization ability of test set 

Fig. 3 gives the prediction results for one of the cross-sections in the test set under two data 

patterns. It shows that the machine learning model is able to predict the distribution of FDs to a 

certain extent, but the prediction effect of pattern 2 is significantly better than that of pattern 1. 

The mean relative error (MRE) of models under pattern 2 is only 0.1520. 
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Figure 1. Schematic diagram of section 2 4 6 8 10 12
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Figure 2. Fitting accuracy of training set.              Figure 3. Generalization ability of test set. 

 

3.3. Distribution analysis of flutter derivatives 
The process of machine learning is often considered a "black box". In order to express the machine 

learning model in some explicit way, the Shapley additive explanation (SHAP) is applied here. 

SHAP is an additive model interpreter which focuses on calculating the SHAP values of each feature 

as a reflection of how much the feature contributes to the prediction of the model. Fig. 4 shows the 

SHAP values of several dimensions of the cross-section. (Note: K1, K2, K3, K4 and K5 represent the 

height of beam, width of deck, wind fairing extension length, wind fairing angle, and inclined web slope, 

respectively. They are ranked from top to bottom according to the effect magnitude on each FD.) For 

𝐴1
∗ ~𝐴4

∗ , K1 has the greatest effect on them, and they have the same change direction as K1. It means 

𝐴1
∗ ~𝐴4

∗  increase with the height of beam, but 𝐴1
∗ ~𝐴3

∗  are more likely to be positive and 𝐴4
∗  is more 

likely to be negative. For 𝐻1
∗ ~𝐻4

∗ , the impact of K5 is large. Except that the situation of 𝐻2
∗  is unclear, 

𝐻1
∗ , 𝐻3

∗  and 𝐻4
∗  all change in the opposite direction to K5 and it is more likely that they are all negative. 



 

4. PARAMETER ANALYSIS OF FLUTTER PERFORMANCE 

Several machine learning models were trained in this study and the FDs prediction results with 

different errors can be obtained by different trained models. These errors are ultimately reflected 

in the FCV calculation as shown in Fig. 5. When the prediction error of FDs can be reduced to 

less than 15%, the calculation result of FCV is very close to the true value and the calculation 

error is less than 2%. This is due to the fact that different FDs have a major and minor effect on 

the FCV. Fig. 6 shows which FDs have a major impact on FCV by changing the magnitude of 

the FD sequentially. The main factors affecting the FCV are 𝐴1
∗ , 𝐴2

∗ , 𝐴3
∗  and 𝐻3

∗ . The FCV 

decreases with the increase of 𝐴1
∗ , 𝐴3

∗  and 𝐻3
∗  and increases with the increase of 𝐴2

∗ . This 

conclusion is only applicable to the closed box girder section within a certain size range. 
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Figure 5. Error analysis. 
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Figure 4. SHAP model explanation.                        Figure 6. Sensitivity analysis. 

 

5. CONCLUSIONS 

In this paper, the flutter derivatives of closed box girders are identified by gradient boosting 

decision tree algorithm. The machine learning model is trained based on two data patterns. The 

data pattern based on numerical simulation is superior to the pattern based on wind tunnel test. 

The model interpretation after training is also realized to obtain the distribution characteristics of 

flutter derivatives. The error analysis shows that the machine learning prediction error of flutter 

derivatives will be weakened in the numerical calculation of flutter critical velocity. The source 

of error is further explained by flutter derivative sensitivity analysis. 

 

 
REFERENCES  

Abbas, T., Kavrakov, I., Morgenthal, G., and Lahmer, T., 2020. Prediction of aeroelastic response of bridge decks 

using artificial neural networks. Computers and Structures, 231, 106198. 

Chen, N.Y. and Ge, Y.J., 2019. Aerodynamic parameter identification of typical bridge sections based on artificial 

neural network. China Civil Engineering Journal, 52(8), 91-97. (in Chinese) 

Li, Y., Li, C., Liang. Y. D., and Li, J. W., 2022. Fast prediction of the flutter critical wind speed of streamlined box 

girders by using aerostatic force coefficients and artificial neural networks. Journal of Wind Engineering and 

Industrial Aerodynamics, 222, 104939. 

Liao, H. L., Mei, H. Y., Hu, G., Wu, B., and Wang, Q., 2021. Machine learning strategy for predicting flutter 

performance of streamlined box girders. Journal of Wind Engineering and Industrial Aerodynamics, 209, 

104493. 

Lute, V., Upadhyay, A., and Singh, K. K., 2009. Support vector machine based aerodynamic analysis of cable 

stayed bridges. Advances in Engineering Software, 40(9), 830-835. 

Rizzo, F. and Caracoglia, L., 2020. Artificial neural network model to predict the flutter velocity of suspension 

bridges. Computers and Structures, 233, 106236. 


